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summary: DMTCP (Distributed MultiThreaded CheckPointing) is a mature

checkpoint-restart package. It operates in user-space without kernel
privilege, and adapts to application-specific requirements through
plugins. While DMTCP has been able to checkpoint Python and
IPython "from the outside" for many years, a Python module has
recently been created to support DMTCP. IPython support is included
through a new DMTCP plugin. A checkpoint can be requested
interactively within a Python session, or under the control of a specific
Python program. Further, the Python program can execute specific
Python code prior to checkpoint, upon resuming (within the original
process), and upon restarting (from a checkpoint image). Applications
of DMTCP are demonstrated for: (i) Python-based graphics using
VNC; (ii) a Fast/Slow technique to use multiple hosts or cores to
check one Cython computation in parallel; and (iii) a reversible
debugger, FReD, with a novel reverse-expression watchpoint feature
for locating the cause of a bug.

Introduction
DMTCP (Distributed MultiThreaded CheckPointing) Ansel09 is a mature user-space
checkpoint-restart package. One can view checkpoint-restart as a generalization of
pickling. Instead of saving an object to a file, one saves the entire Python session to a
file. Checkpointing graphics in Python is also supported by checkpointing a virtual
network client (VNC) session with Python running inside that session.

DMTCP is available as a Linux package for many popular Linux distributions. DMTCP
can checkpoint Python or IPython from the outside, i.e. by treating Python as a black
box. To enable checkpointing, the Python interpreter is launched in the following
manner:

$ dmtcp_checkpoint python <args>
$ dmtcp_command --checkpoint

The command dmtcp_command can be used at any point to create a checkpoint of the
entire session.

However, most Python programmers will prefer to request a checkpoint interactively
within a Python session, or else programmatically from inside a Python or Cython
program.

DMTCP is made accessible to Python programmers as a Python module. Hence, a 
checkpoint is executed as import dmtcp; dmtcp.checkpoint(). This Python
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module provides this and other functions to support the features of DMTCP. The module
for DMTCP functions equally well in IPython.

This DMTCP module implements a generalization of a saveWorkspace function, which
additionally supports graphics and the distributed processes of IPython. In addition,
three novel uses of DMTCP for helping debug Python are discussed.

1. Fast/Slow Computation : Cython provides both traditional interpreted functions and
compiled C functions. Interpreted functions are slow, but correct. Compiled
functions are fast, but users sometimes declare incorrect C types, causing the
compiled function silently return a wrong answer. The idea of fast/slow computation
is to run the compiled version on one computer node, while creating checkpoint
images at regular intervals. Separate computer nodes are used to check each
interval in interpreted mode between checkpoints.

2. FReD : a Fast Reversible Debugger that works closely with the Python pdb
debugger, as well as other Python debuggers.

3. Reverse Expression Watchpoint : This is a novel feature within the FReD reversible
debugger. Assume a bug occurred in the past. It is associated with the point in time
when a certain expression changed. Bring the user back to a pdb session at the
step before the bug occurred.

The remaining sections describe: the DMTCP-Python Integration through a Python
Module; and several extensions of the integration of DMTCP with Python. The
extensions include support for Checkpointing Python-Based Graphics; Checking Cython
with Multiple CPython Instances (fast/slow technique); and Reversible Debugging with
FReD. More information about DMTCP is added in Appendix: Background of DMTCP.

DMTCP-Python Integration through a Python
Module
A Python module, dmtcp.py, has been created to support checkpointing both from
within an interactive Python/IPython session and programmatically from within a Python
or Cython program. DMTCP has been able to asynchronously generate checkpoints of a
Python session for many years. However, most users prefer the more fine-grained
control of a Python programmatic interface to DMTCP. This allows one to avoid
checkpointing in the middle of a communication with an external server or other atomic
transaction.

A Python Module to Support DMTCP
Some of the features of module.py are best illustrated through an example. Here, a
checkpoint request is made from within the application.

...
import dmtcp
...
# Request a checkpoint if running under checkpoint
# control
dmtcp.checkpoint()
# Checkpoint image has been created
...

It is also easy to add pre- and post-checkpoint processing actions.



...
import dmtcp
...
def my_ckpt(<args>):

    # Pre processing
    my_pre_ckpt_hook(<args>)
    ...
    # Create checkpoint
    dmtcp.checkpoint()
    # Checkpoint image has been created
    ...
    if dmtcp.isResume():
        # The process is resuming from a checkpoint
        my_resume_hook(<args>)
        ...
    else:
        # The process is restarting from a previous
        # checkpoint
        my_restart_hook(<args>)
        ...

    return
...

The function my_ckpt can be defined in the application by the user and can be called
from within the user application at any point.

Extending the DMTCP Module for Managing Sessions
These core checkpoint-restart services are further extended to provide the user with the
concept of multiple sessions. A checkpointed Python session is given a unique session
id to distinguish it from other sessions. When running interactively, the user can view the
list of available checkpointed sessions. The current session can be replaced by any of
the existing session using the session identifier.

The application can programmatically revert to an earlier session as shown in the
following example:

...
import dmtcp
...
sessionId1 = dmtcp.checkpoint()
...
sessionId2 = dmtcp.checkpoint()
...

...
if <condition>:
    dmtcp.restore(sessionId2)
else:
    dmtcp.restore(sessionId1)



Save-Restore for IPython Sessions
To checkpoint an IPython session, one must consider the configuration files. The
configuration files are typically stored in user's home directory. During restart, if the
configuration files are missing, the restarted computation may fail to continue. Thus,
DMTCP must checkpoint and restore all the files required for proper restoration of an
IPython session.

Attempting to restore all configuration files during restart poses yet another problem: the
existing configuration files might have newer contents. Overwriting these newer files with
copies from the checkpoint time may result in the loss of important changes.

To avoid overwriting the existing configuration files, the files related to IPython session
are restored in a temporary directory. Whenever IPython shell attempts to open a file in
the original configuration directory, the filepath is updated to point to the temporary
directory. Thus, the files in the original configuration directory are never modified.
Further, the translation from original to temporary path is transparent to the IPython
shell.

Save-Restore for Parallel IPython Sessions
DMTCP is capable of checkpointing a distributed computations with processes running
on multiple nodes. It automatically checkpoints and restores various kinds of
inter-process communication mechanisms such as shared-memory, message queues,
pseudo-ttys, pipes and network sockets.

An IPython session involving a distributed computation running on a cluster is
checkpointed as a single unit. DMTCP allows restarting the distributed processes in a
different configuration than the original. For example, all the processes can be restarted
on a single computer for debugging purposes. In another example, the computation may
be restarted on a different cluster altogether.

Checkpointing Python-Based Graphics
Python is popular for scientific visualizations. It is possible to checkpoint a Python
session with active graphics windows by using VNC. DMTCP supports
checkpoint-restart of VNC server. In this case, a VNC server can be started
automatically. The process environment is modified to allow the Python interpreter to
communicate with the VNC server instead of the X-window server. For visualization, a
VNC client can be fired automatically to display the graphical window. During
checkpoint, the VNC server is checkpointed as part of the computation, while the VNC
client is not. During restart, the Python session and the VNC server are restored from
their checkpoint images, and a fresh VNC client is launched. This VNC client
communicates with the restored server and displays the graphics to the end user.

...
import dmtcp
...
# Start VNC server
dmtcp.startGraphics()

...

# Start VNC viewer
dmtcp.showGraphics()



# generate graphics (will be shown in the VNC viewer)
...

To understand the algorithm behind the code, we recall some VNC concepts. X-window
supports multiple virtual screens. A VNC server creates a new virtual screen. The
graphics contained in the VNC server is independent of any X-window screen. The VNC
server process persists as a daemon. A VNC viewer displays a specified virtual screen
in a window in a console. When python generates graphics, the graphics is sent to a
virtual screen specified by the environment variable $DISPLAY.

The command dmtcp.startGraphics() creates a new X-window screen by creating
a new VNC server and sets the $DISPLAY environment variable to the new virtual
screen. All python graphics are now sent to this new virtual screen. The additional
screen is invisible to the python user until the python command
dmtcp.showGraphics() is given. The Python Command dmtcp.showGraphics()
operates by invoking a VNC viewer.

At the time of checkpoint, the VNC server process is checkpointed along with the python
interpretor while the VNC viewer is not checkpointed.

On restart, the VNC server detects the stale connection to the old VNC viewers. The
VNC server perceives this as the VNC viewer process that has now died. The DMTCP
module then launches anew VNC viewer to connect to the VNC server.

Checking Cython with Multiple CPython
Instances
A common problem for compiled versions of Python such as Cython Behnel10 is how to
check whether the compiled computation is faithful to the interpreted computation.
Compilation errors can occur if the compiled code assumes a particular C type, and the
computation violates that assumption for a particular input. Thus, one has to choose
between speed of computation and a guarantee that that the compiled computation is
faithful to the interpreted computation.

A typical scenario might be a case in which the compiled Cython version ran for hours
and produced an unexpected answer. One wishes to also check the answer in a matter
of hours, but pure Python (CPython) would take much longer.

Informally, the solution is known as a fast/slow technique. There is one fast process
(Cython), whose correctness is checked by multiple slow processes (CPython). The
core idea is to run the compiled code, while creating checkpoint images at regular
intervals. A compiled computation interval is checked by copying the two corresponding
checkpoints (at the beginning and end of the interval) to a separate computer node for
checking. The computation is restarted from the first checkpoint image, on the checking
node. But when the computation is first restarted, the variables for all user Python
functions are set to the interpreted function object. The interval of computation is then
re-executed in interpreted mode until the end of the computation interval. The results at
the end of that interval can then be compared to the results at the end of the same
interval in compiled mode.

Figure 1 illustrates the above idea. A similar idea has been used by Ghoshal11 for
distributed speculative parallelization.



Figure 1: Fast Cython with Slow CPython "checking" nodes.

Note that in order to compare the results at the end of a computation interval, it is
important that the interpreted version on the checker node stop exactly at the end of the
interval, in order to compare with the results from the checkpoint at the end of the same
interval. The simplest way to do this is to add a counter to a frequently called function of
the end-user code. The counter is incremented each time the function is called. When
the counter reaches a pre-arranged multiple (for example, after every million calls), the
compiled version can generate a checkpoint and write to a file the values of variables
indicating the state of the computation. The interpreted version writes to a file the values
of variables indicating its own state of the computation.

mycounter = 0
def freq_called_user_fnc(<args>):
    global mycounter
    mycounter += 1
    if mycounter % 1000000 == 0:
        # if running as Cython:
        if type(freq_called_user_fnc) == type(range):
            # write curr. program state to cython.log
            dmtcp.checkpoint()
            if dmtcp.isRestart():
                # On restart from ckpt image,
                #   switch to pure Python.
        else: # else running as pure Python
            # write curr. program state to purePython.log
            sys.exit(0)
    ...
    # original body of freq_called_user_fnc
    return

The above code block illustrates the principles. One compares cython.log and
purePython.log to determine if the compiled code was faithful to the interpreted code. If
the Cython code consists of direct C calls between functions, then it will also be
necessary to modify the functions of the C code generated by Cython, to force them to
call the pure Python functions on restart after a checkpoint.

Reversible Debugging with FReD
While debugging a program, often the programmer over steps and has to restart the
debugging session. For example, while debugging a program, if the programmer steps
over (by issue next command inside the debugger) a function f() only to determine
that the bug is in function f() itself, he or she is left with no choice but to restart from
the beginning.

Reversible debugging is the capability to run an application "backwards" in time inside a 
debugger. If the programmer detects that the problem is in function f(), instead of



restarting from the beginning, the programmer can issue a reverse-next command
which takes it to the previous step. He or she can then issue a step command to step
into the function in order to find the problem.

Figure 2: Fast Reversible Debugger.

FReD (Fast Reversible Debugger) Arya12, FReD13 is a reversible debugger based on
checkpoint-restart. FReD is implemented as a set of Python scripts and uses DMTCP to
create checkpoints during the debugging session. FReD also keeps track of the
debugging history. Figure 2 shows the architecture of FReD.

A Simple UNDO Command
The UNDO command reverses the effect of a previous debugger command such as
next, continue or finish. This is the most basic of reversible debugging
commands.

The functionality of the UNDO command for debugging Python is trivially implemented.
A checkpoint is taken at the beginning of the debugging session and a list of all
debugging commands issued since the checkpoint are recorded.

To execute the UNDO command, the debugging session is restarted from the
checkpoint image, and the debugging commands are automatically re-executed from the
list excluding the last command. This takes the process back to before the debugger
command was issued.



In longer debugging sessions, checkpoints are taken at frequent intervals to reduce the
time spent in replaying the debugging history.

More complex reverse commands

Figure 3: Reverse Commands.

Figure 3 shows some typical debugging commands being executed in forward as well as
backward direction in time.

Suppose that the debugging history appears as [next,next] i.e. the user issued two
next commands. Further, the second next command stepped over a function f().
Suppose further that FReD takes checkpoints before each of these commands. In this
situation, the implementation for reverse-next command is trivial: one restarts from
the last checkpoint image. However, if the command issued were reverse-step,
simply restarting from the previous checkpoint would not suffice.

In this last case, the desired behavior is to take the debugger to the last statement of the
function f(). In such a situation one needs to decompose the last command into a
series of commands. At the end of this decomposition, the last command in the history is
a step. At this point, the history may appear as:
[next,step,next, ...,next,step]. The process is then restarted from the last
checkpoint and the debugging history is executed excluding the last step command.
Decomposing a command into a series of commands terminating with step is
non-trivial, and an algorithm for that decomposition is presented in Visan11 .

A typical debugging session in FReD with Python

$ fredapp.py python -mpdb a.py
(Pdb) break main
(Pdb) run
(Pdb) fred-checkpoint
(Pdb) break 6
(Pdb) continue
(Pdb) fred-history
  [break 6, continue]
(Pdb) fred-reverse-next
(Pdb) fred-history
  [break 7, next, next, next, next, next, next, next,
   next, next, next, step, next, next, next, where]



Reverse Expression Watchpoints
The reverse expression watchpoint automatically finds the location of the fault for a
given expression in the history of the program execution. It brings the user directly to a
statement (one that is not a function call) at which the expression is correct, but
executing the statement will cause the expression to become incorrect.

Figure 4: Reverse Expression Watchpoint.

Figure 4 provides a simple example. Assume that a bug occurs whenever a linked list
has length longer than one million. So an expression
linked_list.len() <= 1000000 is assumed to be true throughout. Assume that it
is too expensive to frequently compute the length of the linked list, since this would
require O(n^2) time in what would otherwise be a O(n) time algorithm. (A more
sophisticated example might consider a bug in an otherwise duplicate-free linked list or
an otherwise cycle-free graph. But the current example is chosen for ease of illustrating
the ideas.)

If the length of the linked list is less than or equal to one million, we will call the
expression "good". If the length of the linked list is greater than one million, we will call
the expression "bad". A "bug" is defined as a transition from "good" to "bad". There may
be more than one such transition or bug over the process lifetime. Our goal is simply to
find any one occurrence of the bug.

The core of a reverse expression watchpoint is a binary search. In Figure 4, assume a
checkpoint was taken near the beginning of the time interval. So, we can revert to any
point in the illustrated time interval by restarting from the checkpoint image and
re-executing the history of debugging commands until the desired point in time.

Since the expression is "good" at the beginning of Figure 4 and it is "bad" at the end of
that figure, there must exist a buggy statement : a statement exhibiting the transition
from "good" to "bad". A standard binary search algorithm converges to a case in which
the current statement is "good" and the next statement transitions from "good" to "bad".
By the earlier definition of a "bug", FReD has found a statement with a bug. This
represents success.

If implemented naively, this binary search requires that some statements may need to
be re-executed up to \log_2 N times. However, FReD can also create intermediate
checkpoints. In the worst case, one can form a checkpoint at each phase of the binary
search. In that case, no particular sub-interval over the time period needs to be
executed more than twice.



A typical use of reverse-expression-watchpoint

$ ./fredapp.py python -mpdb ./autocount.py
-> import sys, time
(Pdb) break 21
  Breakpoint 1 at /home/kapil/fred/autocount.py:21
(Pdb) continue
  > /home/kapil/fred/autocount.py(21)<module>()
# Required for fred-reverse-watch
(Pdb) fred-checkpoint
(Pdb) break 28
  Breakpoint 2 at /home/kapil/fred/autocount.py:28
(Pdb) continue
  ...  <program output> ...
  > /home/kapil/fred/autocount.py(28)<module>()
(Pdb) print num
  10
(Pdb) fred-reverse-watch num < 5
(Pdb) print num
  4
(Pdb) next
(Pdb) print num
  5

Conclusion
DMTCP is a widely used standalone checkpoint-restart package. We have shown that it
can be closely integrated with Python. Specifically, parallel sessions with IPython,
alternating interpreted and compiled execution modes, graphics, and enhancing Python
debugger with reversibility. The implementation can be extended by the end users to
augment the capabilities of Python beyond the simple example of checkpoint-restart.
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Figure 5: Architecture of DMTCP.

DMTCP Ansel09 is a transparent checkpoint-restart package with its roots going back
eight years Rieker06. It works completely in user space and does not require any
changes to the application or the operating system. DMTCP can be used to checkpoint
a variety of user applications including Python.

Using DMTCP to checkpoint an application is as simple as executing the following
commands:

dmtcp_checkpoint ./a.out
dmtcp_command -c
./dmtcp_restart_script.sh

DMTCP automatically tracks all local and remote child processes and their relationships.

As seen in Figure 6, a computation running under DMTCP consists of a centralized
coordinator process and several user processes. The user processes may be local or
distributed. User processes may communicate with each other using sockets,
shared-memory, pseudo-terminals, etc. Further, each user process has a checkpoint
thread which communicates with the coordinator.

DMTCP Plugins



Figure 6: DMTCP Plugins.

DMTCP plugins are used to keep DMTCP modular. There is a separate plugin for each
operating system resource. Examples of plugins are pid plugin, socket plugin, and file
plugin. Plugins are responsible for checkpointing and restoring the state of their
corresponding resources.

The execution environment can change between checkpoint and restart. For example,
the computation might be restarted on a different computer which has different file
mount points, a different network address, etc. Plugins handle such changes in the



execution environment by virtualizing these aspects. Figure 6 shows the layout of
DMTCP plugins within the application.

DMTCP Coordinator
DMTCP uses a stateless centralized process, the DMTCP coordinator, to synchronize
checkpoint and restart between distributed processes. The user interacts with the
coordinator through the console to initiate checkpoint, check the status of the
computation, kill the computation, etc. It is also possible to run the coordinator as a
daemon process, in which case, the user may communicate with the coordinator using
the command dmtcp_command.

Checkpoint Thread
The checkpoint thread waits for a checkpoint request from the DMTCP coordinator. On
receiving the checkpoint request, the checkpoint thread quiesces the user threads and
creates the checkpoint image. To quiesce user threads, it installs a signal handler for a
dedicated POSIX signal (by default, SIGUSR2). Once the checkpoint image has been
created, the user threads are allowed to resume executing application code. Similarly,
during restart, once the process memory has been restored, the user threads can
resume executing application code.

Checkpoint
On receiving the checkpoint request from the coordinator, the checkpoint thread sends
the checkpoint signal to all the user threads of the process. This quiesces the user
threads by forcing them to block inside a signal handler, defined by the DMTCP. The
checkpoint image is created by writing all of user-space memory to a checkpoint image
file. Each process has its own checkpoint image. Prior to checkpoint, each plugin will
have copied into user-space memory any kernel state associated with its concerns.
Examples of such concerns include network sockets, files, and pseudo-terminals. Once
the checkpoint image has been created, the checkpoint thread "un-quiesces" the user
threads and they resume executing application code.

At the time of checkpoint, all of user-space memory is written to a checkpoint image file.
The user threads are then allowed to resume execution. Note that user-space memory
includes all of the run-time libraries (libc, libpthread, etc.), which are also saved in the
checkpoint image.

In some cases, state outside the kernel must be saved. For example, in handling
network sockets, data in flight must be saved. This is done by draining the network data
by sending a special cookie through the "send" end of each socket in one phase. In a
second phase, after a global barrier, data is read from the "receive" end of each socket
until the special cookie is received. The in-flight data has now been copied into
user-space memory, and so will be included in the checkpoint image. On restart, the
network buffers are refilled by sending the in-flight data back to the peer process, which
then sends the data back into the network.

Restart
As the first step of restart phase, all memory areas of the process are restored. Next, the
user threads are recreated. The plugins then receive the restart notification and restore
their underlying resources, translation tables, etc. Finally, the checkpoint thread
"un-quiesces" the user threads and the user threads resume executing application code.
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